a new solvable problem
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High nitrous oxide fluxes from rice indicate the need to
manage water for both long- and short-term

climate impacts
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Global rice cultivation is estimated to account for 2.5% of current
anthropogenic warming because of emissions of methane (CH), a
short-lived greenhouse gas. This estimate assumes a widespread prev-
alence of continuous flooding of most rice fields and hence does
not include emissions of nitrous oxide (N,0), a long-lived greenhouse
gas. Based on the belief that minimizing CH, from rice cultivation is
always climate beneficial, current mitigation policies promote in-
creased use of intermittent flooding. However, results from five in-
termittently flooded rice farms across three agroecological regions in
India indicate that N,O emissions per hectare can be three times
higher (33 kg-N,0-ha™"season™") than the maximum previously
reported. Correlations between N,O emissions and management pa-
rameters suggest that N,O emissions from rice across the Indian sub-
continent might be 30-45 times higher under intensified use of
intermittent flooding than under continuous flooding. Our data fur-
ther indicate that comanagement of water with inorganic nitrogen
and/or organic matter inputs can decrease climate impacts caused by
greenhouse gas emissions up to 90% and nitrogen management might
not be central to N,O reduction. An understanding of climate benefits/
drawbacks over time of different flooding regimes because of differ-

of the total CO,e g9, even under intermittently flooded condi-
tions (13-15). None of the major rice-producing countries, in-
cluding the two leading rice producers, China and India (16, 17),
officially report rice-N>O or related emission factors in their
national GHG inventories submitted to the United Nations (3).
Crucially, most policy recommendations on rice management
that include consideration of climate impacts focus on reducing
rice-CH; by alternate wetting and drying (AWD), also called
intermittent flooding. Water ﬁ:vcls during intermittent flooding
are typically allowed to fall to 15 cm below the soil surface before
another round of irrigation (13-15). The only notable global
policy guidance document to recognize rice-N>O is a recent
modeling-based report (18), which suggested that, globally,
neglecting contribution of soil carbon, rice-N,O contributes 25%
to the GHG impact of rice cultivation on a CO,e,, basis (9).

Many factors including redox, bioavailable N, and organic C
affect the extent of N>O formation that occurs primarily due to
microbial nitrification—denitrification. Most research done to
capture rice-N,O to date has been performed at farms with
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Our partnerships: Fair Climate Network

Data from universities/government labs unreliable, inconsistent or scarce
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When we started, we bought into the current paradigm

Irrigated farms =» Continuous flooding =» Methane + small N3O
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Treatments & managed farms (2012-14)
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Sampling guidelines and analytical optimization for direct greenhouse gas

emissions from tropical rice and upland cropping systems

Rakesh Tiwari ("2, K. Kritee (%, Tapan K.Adhya Terry Loecke?, Joe Rudek’, Drlshya Nalr12 Rlchle Ahu]a

Shalini Ballreddygan , Somashekar Balakrishna“, Karthik Ram®, Leelavathl C.Ver
Murugan Madasamy’ and Abhilash Salai®

'Environmental Defense Fund, 2060 Broadway, Boulder, Colorado, USA, 80302; *Fair Climate Netwol
Chikaballapura, Karnataka, India, 56120; *University of Lincoln, 3310 Holdrege St, Lincoln, Nebraska,
for Rural Education and Development, Bidadi, Ramanagara, Karnataka, India, 562109; *Bharath Envir
Pudukkottai, Tamil Nadu, India, 622101; ®Accion Fraterna Ecology Centre, Anantapur, Andhra Prades
Development Society, Tirunelveli, Tamil Nadu, India, 627452

ABSTRACT

We describe a modified manual closed-chamber approach with detachable lid and wve
stackable chambers for sampling followed by simultaneous analysis of nitrous oxide
and methane (CH,4) for measuring greenhouse gas flux from rice and upland cropping s
in peninsular India. A meta-analysis of leading internationally/regionally recomn
approaches to monitor agricultural GHG emissions is presented to put our sampling «
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Stackable Manual
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Best practices for tropical conditions

N,O mg/h/m?

N,O mg/h/m?
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Rigorous sampling regime: All year




Comparison with climate smart practice brief (2014)

100 y Global Warming Potential (tCO, ha)
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Continuous flooding (R&S, 2014)

"Multiple aeration" (R&S, 2014)



Comparison with climate smart practice brief (2014)

100 y Global Warming Potential (tCO, ha)
0 2 4 6 8 10

M Nitrous oxide
Methane

Continuous flooding (R&S, 2014)

"Multiple aeration" (R&S, 2014)

Lagomarsino et al (2016)

Kritee et al (2018)



Igh #riceN,O
10-20X typical AWD

Emission factor: Up to 50X continuous flooding
Mitigation potential = Up to 90% = 20X IPCC
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Experimental treatments: Detalls .

Table 1. Farm-specific baseline (business as usual), APs, and GHG emissions

Inorganic nitrogen,* Carbon inpu‘c,'r Water index,* Flood Intermittent flooding N>O, CH,,
Farm/year and treatment kg-ha™" tha™’ cm events® regime" kg-ha™" kg-ha™’

Agroecological region” 3.0 (seed variety BPT 5204)

Farm 1 2012
Baseline 91 3.9-45 —555 (85) 1 Medium 13.1 (6.03) 66.5 (38.4)
Alternate 0 4.1-4.8 -580 (144) 1 Medium 4.7 (1.53) 81.1 (69.7)
Farm 2 2013
Baseline 243 5.6-6.8 -0.7 (33) 3 Mild 0.62 (0.47) 105 (7.23)
Alternate 0 8.4-10.0 -152 (16) 3 Mild 0.10 (0.20) 98.3 (74.5)
Agroecological Region” 8.3 (seed variety ADT 39)
Farm 3 2012/
Baseline 219 0.0-0.0 -486 (10) 0 Medium 22.7 (7.47) 3.98 (4.89)
Alternate 61 2.7-3.7 -416 (81) 0 Medium 2.51(0.69) 4.6 (0.39)
Farm 3 2013
Baseline 202 0.6-0.8 —-1,036 (16) 3 Intense 17.4 (15.4) 108 (11.2)
Alternate 20 2.5-3.0 -858 (52) 3 Intense 11.5(9.55) 112 (33.9)
Farm 4 2014
Baseline 174 1.0-1.2 -212 (63) 3 Mild/medium 0.88 (0.83) 141 (19.3)
Alternate 91 1.1-1.4 -316 (147) 5 Mild/medium 0.02 (0.2) 154 (54.3)
Agroecological Region” 8.1 (seed variety ASD 16)
Farm 5 2013
Baseline 121 0.0-0.0 15 (65) 3 Mild 1.39 (1.66) 286 (49.1)

Alternate 99 0.01-0.02 -155 (91) 4 Mild 2.47 (1.16) 216 (88.1)




Why did we observe high rice N,O emissions?

Hypothesis: Sampling intensity + Flood regimes
Spike 10-28 days after fertilizer addition

DAP =33 Kg N/ha Urea = 58 Kg N/ha 10
9 - g
® >
~ \ H - 0 :
£ 7 HIRIIRE 2
= 2
I E — <P}
L-- B '10 g
> 3 o® -5
Z . p—
5
[ o

- =20
1 - % ° ° =

& L/ ® o q -
1 J: 10 20 30 40 50 60 70 80 90 100 110 17

Days after transplantation



Hyvpothesis: Sampling intensity + Flood regimes

Flood events (> 3 days)
Water index (cm)

less than -1200 Upland

-600 to -1200  Intense-intermittent flooding
-250 to -600 Medium-intermittent flooding
Mild-intermittent Flooding

250 to -250
600 to 250
more than 600

Control

, Water Level(cm)

Water index = gray - yellow
Days After Sowing

Continous flooding

. Water level (cm)

- = Continuous flooding —Mild-intermittent

1 - -Medium-intermittent — Intense-intermittent
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Multiple regression models

*Multivariate regression analysis with 25 measured parameters

Rice N,O =

- Extent of flooding
- _Flooding frequency

+ Nitrogen fertilizer

- Organic matter

N,O = -0.01*(water index) — 0.91*(flood events 3 4,,¢) + 0.02*N

CH, = 34*(flood events_; 4,,s) + 88*SOM + €2

Rice CH, =

+ Flooding frequency
+ Soil organic matter

+ Organic matter

+ €1

inorganic




EDF White paper

How big could the #riceN,O elephant be?
Are there any potential hotspots?

Limited global geospatial rice-N,O risk analysis




Rice management classes in the world: Dominant system

(IRRI, 2011)
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Global rice inorganic N fertilizer use in 2000

(Mueller 2012)
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Medium-intermittent vs continuous flooding

Interactive maps,
blogs & global analysis

edf.org/riceN20

Total N,O risk
per IRRI defined region

Qualitative assessment: Risk of elevated N,O emissions

Low |—— . High




Potential change in climate impacts of rice

» Global Rice CH, = 700-1250 MMT CO,€,4 (EPA-MAC 2013, IPCC 2013)
= 10-12% anthropogenic or 15-20% Ag CH,

New: 1500-2000

» Global rice mitigation potential
« 230 MMT CO,e 4, (IPCC 2007)

New: 450-550




Current recommendations could give us short-term win, long-term loss
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Potential pathways for reducing both CH, & N,O

We suggest mild-intermittent flooding which has
of water index between 250 to -250 cm

Different mild-intermittent regimes

Water level (cm)
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Previous literature After Kritee et al (2018) & this report
Maximum hourly flux (ug N,O m™? h™) 2,100 15,000
Maximum seasonal flux (kg ha™* season'l) 9.9 32.8
Emission factor (% of added N converted to N,O)* 0.02to O 7% 0.02to 31%

Maximum rice-N,O Mitigation potential (tCO,e9p ha Y

Global rice-N,0 emissions (MMT N,0) 0.08-0.84** 1.5-2.4**
Global rice-N,O (MMT tCO,e140) 24-250%* 447-715%*
Global climate impact of rice cultivation (MMT tCO,e;40) 700-1250%*** 1500—1930###

Global mitigation potential (MMT tCO,e;q) 450-550"

Climate impacts of rice cultivaton Short-term Both short- and long-term
Greenhouse gases from rice fields reported to UNFCCC CH, CH, and hopefully N,O
. i . Reduce water & organic input (with a Co-manage fertilizer & organic input region-
Main recommended strategy to reduce rice GHG emissions } . e .
mention of N use eff|c|eny to tackle NZO) speC|f|ca||y with central focus on water
Alternate wetting and drying Mild-intermittent or shallow flooding (without

Best water management strategy for irrigated farms
& &Y & extended flooding/drainage)




—

« Farmer benefit will drive all mitigation and adaptation efforts.
« Water management: key driver of both CH, + N,O.

« Institutional capacity has been built and course can be corrected, if
needed.

« When multiple aeration is involved, N,O can be important
« Flooding regimes at farmer-managed irrigated/rainfed farms.
« GHG sampling >50% of days season-! for intense flood regimes.



Questions and comments?

edf.org/RiceN20

Email: kritee@edf.org + rahuja@edf.org
Twitter: @KriteeKanko




