Knowledge 1a: Current initiatives and activities in the region on reducing emissions and increasing resilience in rice landscapes

Assessing the feasibility of GHG mitigation through water saving techniques (AWD) in irrigated rice fields in southeast Asian countries (FYs 2013-2017 funded by MAFF of Japan)

Outline of the MIRSA-2 project

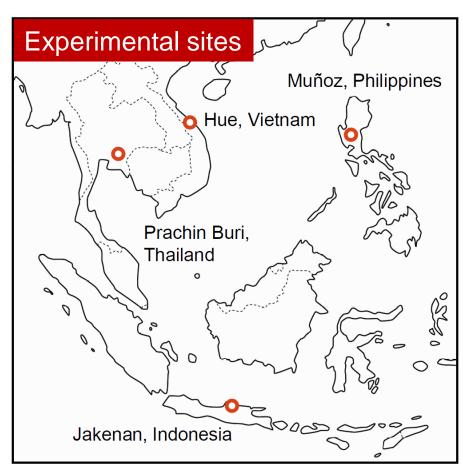
Kazunori Minamikawa (JIRCAS, Japan)

MIRSA-2 project funded by MAFF of Japan

Completed 5-year international research project to support the activities of GRA Paddy Rice Research Group. →Asia sub-group meeting will be held on DAY3 afternoon.

Project goal was to develop improved water management based on AWD that can always reduce CH_4+N_2O emission from irrigated rice paddies in Asian countries.

Field demonstration of AWD feasibility in SEA countries
 →This session's topic

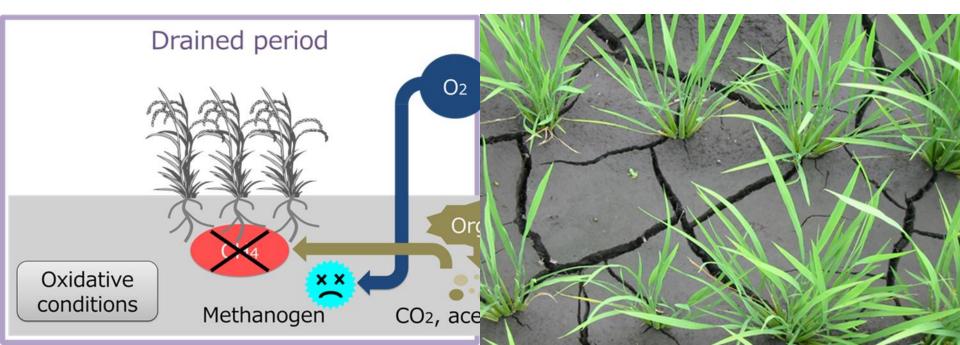

2. Development of MRV guidelines for paddy water mngm
→My presentation's topic on DAY2 morning

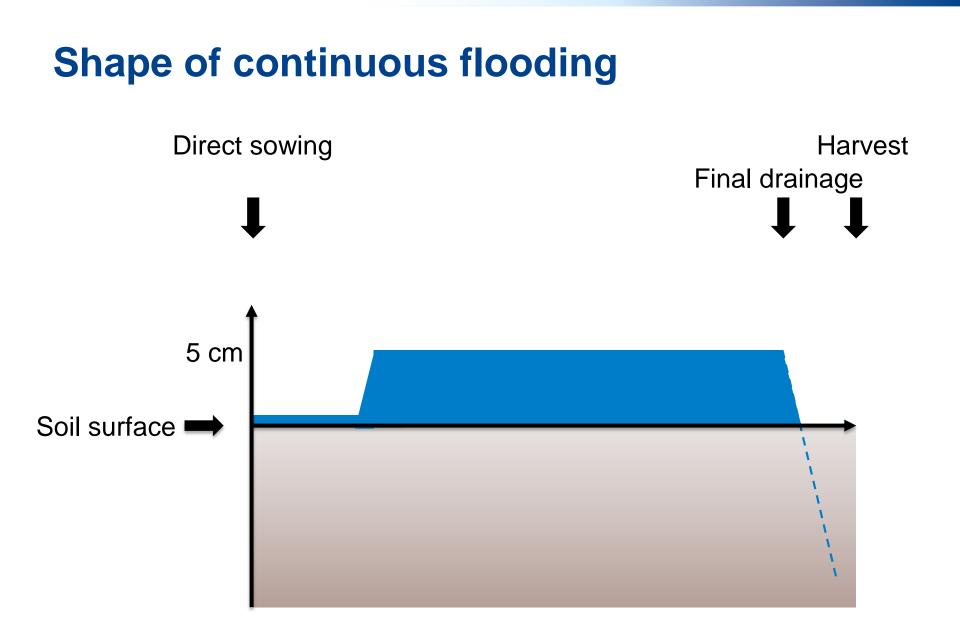
GRA, Global Research Alliance on Agricultural Greenhouse GasesAWD, Alternate Wetting and DryingMRV, Monitoring, Reporting and Verification

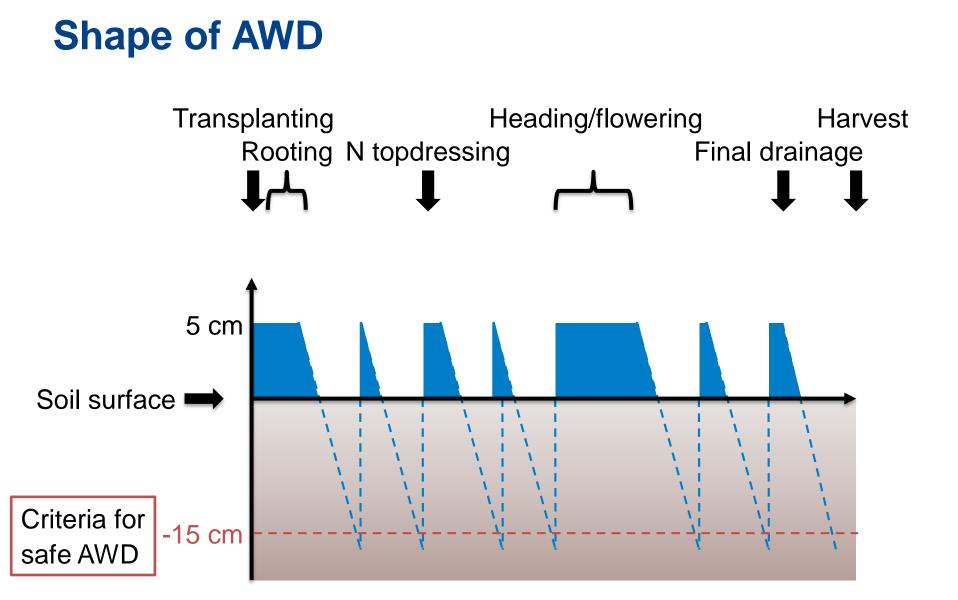
Participating countries and institutes

- Vietnam, Hue University of Agriculture and Forestry
- Thailand, The Joint Graduate School of Energy and Environment, KMUTT
- Philippines, Philippine Rice Research Institute and International Rice Research Institute
- Indonesia, Indonesian Agricultural Environment Research Institute
- Japan, National Agriculture and Food Research Organization

Benefits of AWD


Originally developed and being extended by the International Rice Research Institute since 1990's.


- Water saving for farmers
- CH₄ emission reduction for global environment
- Arsenic pollution control for local environment
- Negative possibilities: water stress, Cadmium pollution, N loss (N₂O), soil fertility, labor, etc.



CH₄ emission from rice paddies

- Produced from easily decomposable organic C by microbes under strictly reductive soil conditions and emitted mainly through rice plants.
- Water management creates oxidative soil conditions, and thus effectively reduces CH₄ production and emission.

Recommendation: Keep flooding to meet rice's water demand in rooting and heading/flowering stages and to improve N-use efficiency after N topdressing.

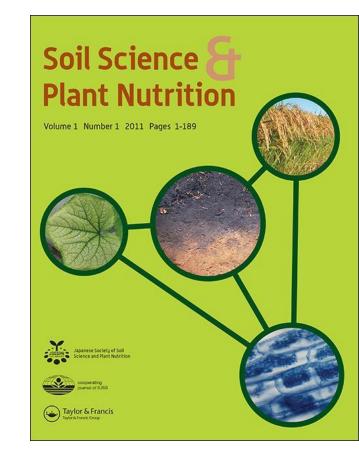
Shared experimental protocol

Objectives

- To assess the feasibility of AWD in irrigated rice paddies
- To derive the emission factor and scaling factor for CH₄ and N₂O

Setting

- 6 crops in 3 years: both dry and wet seasons (rice double cropping)
- 3 water management practices: continuous flooding, safe AWD, and site-specific AWD (explained later)
- Manual closed chamber method



An output from MIRSA-2 project

Five papers (four field papers and one synthesis paper) published from *Soil Science and Plant Nutrition* in 2018.

Open access

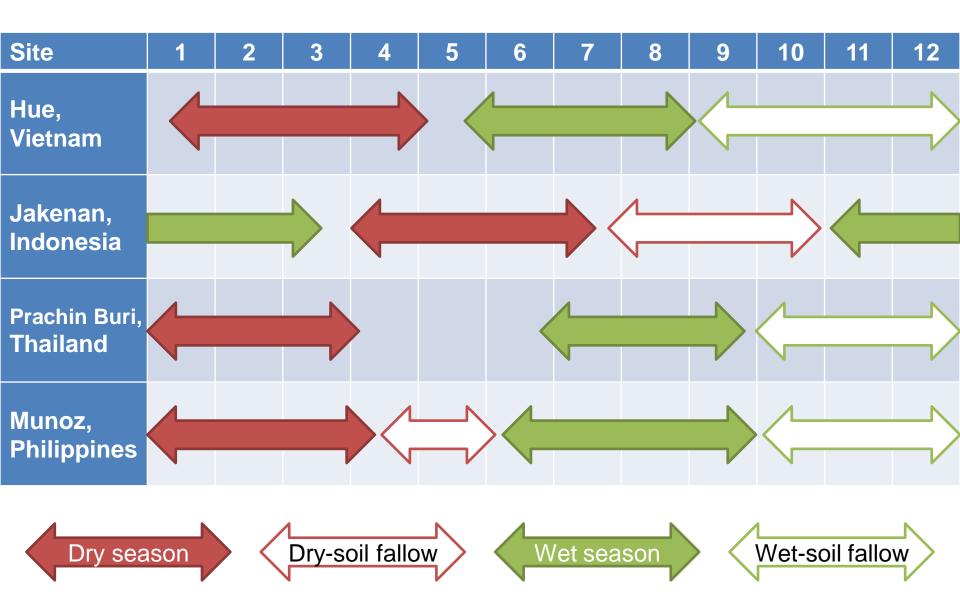
Special Issue on FRONTLINE RESEARCH IN MITIGATING GREENHOUSE GAS EMISSIONS FROM PADDY FIELDS

SOL SCIENCE AND PLANT NUTRITION, 2018 VOL. 64, NO. 1, 2-13 https://doi.org/10.1080/00380768.2017.1409602

Site-specific feasibility of alternate wetting and drying as a greenhouse gas mitigation option in irrigated rice fields in Southeast Asia: a synthesis

Agnes Tirol-Padre^a, Kazunori Minamikawa^b, Takeshi Tokida^b, Reiner Wassmann^{a,c} and Kazuyuki Yagi^b

Kazunori Minamikawa (JIRCAS, Japan)


Check for updates

Agronomic practices

	Hue, Vietnam	Jakenan, Indonesia	Prachin Buri, Thailand	Munoz, Philippines
Rice variety	HT1	Cisadane	RD41	NSIC Rc238
Growth days	96–120	107–132	88–98	81–98
Crop establishment	Wet direct sowing	Wet: Direct sowing Dry: Transplanting	Pre-germinated seed sowing	Transplanting
Chemical N*	92–120	120	70	90–120
Chemical P*	72	60	37.5	40
Chemical K*	62–78	90	37.5	40
Organic amendment	Microbial organic fertilizer	Farmyard manure	None	None
Straw mngm	Removal	Removal	Removal	Removal

* N (kg N ha⁻¹ season⁻¹); P (kg P_2O_5 ha⁻¹ season⁻¹); K (kg K_2O ha⁻¹ season⁻¹).

Crop calendar

Soil properties

CLAYEY SOILS

Prachin Buri, Thailand **USDA:** Vertic Endoaquepts

Munoz,

Fluvisols

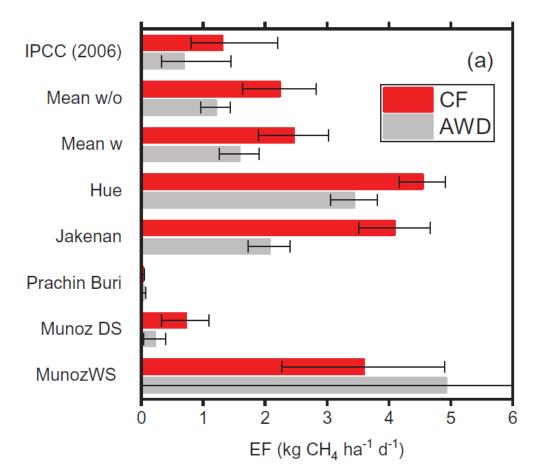
Muñoz, Philippines Hue, Vietnam Prachin Buri Thailand 0 Apg1 **Philippines** \sim Jakenan, Indonesia FAO: Dystric Apg2 40 USDA: Typic 53 Btg 1 Endoaquepts 74 Btg2

LOAMY SOILS

0220

0

Hue, Vietnam FAO: Ustic Epiaquert **USDA:** Eutric Vertisol

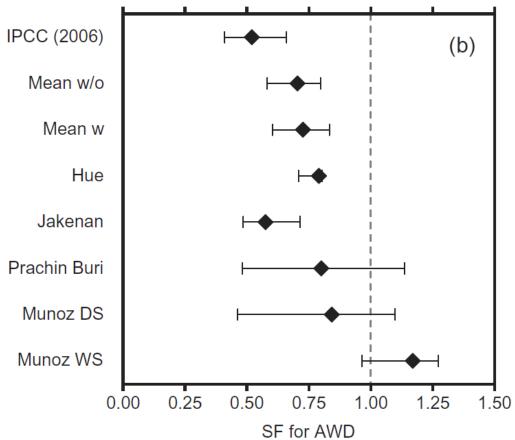

Jakenan, Indonesia USDA: Aeric Endoaquepts

ANOVA statistics

*** 0.1%, ** 1%, * 5%, † 10%

	CH4	N2O	GWP	Grain yield	Yield-scaled GWP	Water use
Site (S)	***	***	***	***	***	***
Dry or wet season (DW)	**	ns	**	ns	**	***
Water mgmt (WM)	*** Mitigation	lo trade-of ns	Mitigation	negative e ns	ns	Saving ***
S×DW	***	***	***	***	***	***
S×WM	ns	ns	*	lr ns	nter-site variation †	N ***
DW×WM	ns	ns	ns	ns	ns	ns
S×DW×WM	ns	ns	ns	ns	ns	*

CH₄ Emission Factor

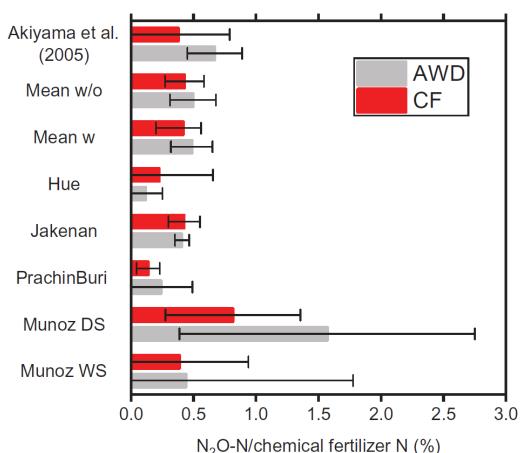


Notes

- IPCC's baseline EFs for continuous flooding (CF) and multiple aeration
- Weighted mean ± bootstrapped 95%CI
- Mean w/o & w: without & with Munoz Philippines WS
- Safe AWD and site-specific AWD combined
- DS, dry season; WS, wet season

Large spatio-temporal variation due to different environmental and agronomic setting.

CH₄ Scaling Factor for AWD

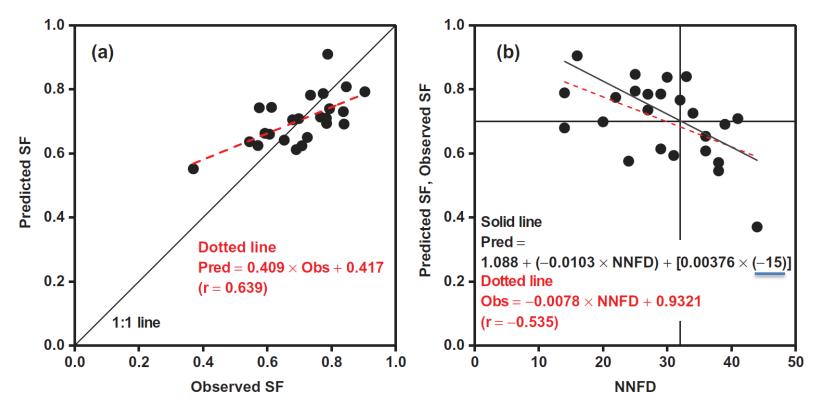


Notes

- IPCC's SF for multiple aeration
 - Weighted mean ± bootstrapped 95%CI
- Mean w/o & w: without & with Munoz Philippines WS
- Safe AWD and site-specific AWD combined
- DS, dry season; WS, wet season

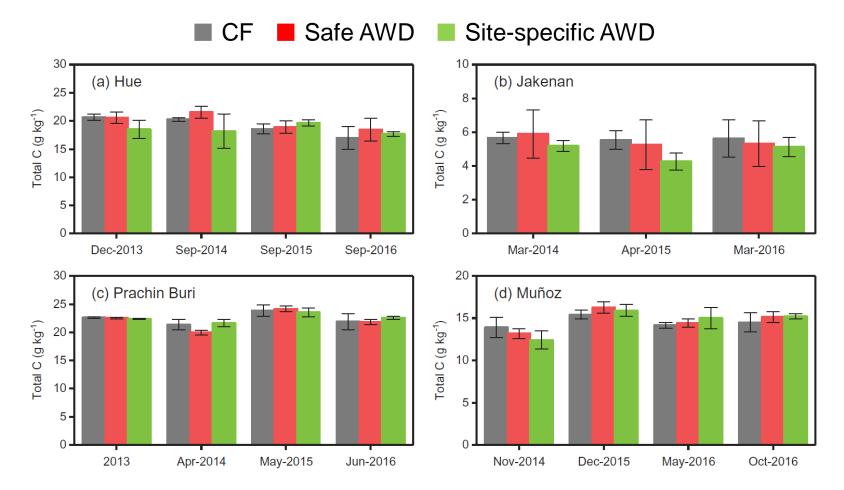
Lower CH_4 mitigation effect by AWD than IPCC's default SF due to varying weather conditions during the field experiment.

N₂O-N / chemical fertilizer-N


Notes

- Akiyama et al.'s values for CF and midseason drainage
- Weighted mean \pm 95%Cl
- Mean w/o & w: without & with Munoz Philippines WS
- Safe AWD and site-specific AWD combined
- DS, dry season; WS, wet season

Mean ratios comparable to Akiyama et al.'s values.


Munoz's high N_2O due to N topdressing during drained period.

The severer drainage, the lower CH₄ in loam

- Combination of the minimum surface water level (MinWL, cm) and the number of non-flooded days (NNFD) explained 41% of the variability in SFs for AWD in loamy soils (i.e., Vietnam and Indonesia).
- When MinWL = -15 cm (i.e., criteria for safe AWD), 30% reduction in CH₄ emission can be achieved if NNFD ≥ 32 based on the predicted SF.

No negative effect on SOC decomposition

Total C and N concentrations in 0-20 cm soil layer did not significantly differ among 3 water management practices through the 3-year experiment at each of the four sites.

Summary

- The mean CH₄ SF for AWD was 0.69 (95%CI: 0.61-0.77) among the four sites (→ lower mitigation potential than IPCC's SF of 0.52).
- In Vietnam and Indonesia sites, AWD was effective even in wet seasons, both of which had a loamy soil.
- In Thailand and Philippines sites, AWD was unsuitable in wet seasons due to the frequent rainfall and the slow water percolation in clayey soils.
- The results indicate that IPCC's SF may only be applied to irrigated rice fields where surface water level is controllable for a substantial period.
- This synthesis underscores the importance of practical feasibility and appropriate timing of water management in successful GHG reductions by AWD.

