Assessing the feasibility of GHG mitigation through water saving techniques (AWD) in irrigated rice fields in the Philippines

Kristine S. Pascual
Philippine Rice Research Institute

October 10, 2018
Bangkok, Thailand
Project Site

Central Luzon, Philippines

- Contributes 20% of the national rice production

- Two distinct season
 - Dry and Wet
Water Management

1. Continuous Flooding (CF)
2. Safe AWD
3. Site Specific AWD (AWDS)
 - Mid-season drainage
 - AWD at -25 cm

Crop Management

- Similar in all 6 cropping seasons
- In 2016 DS and WS:
 1. AWD was implemented 10 DAT
 2. Rice stubble incorporated during dry fallow tillage
Seasonal variations in daily rainfall, mean surface water level, CH$_4$ and N$_2$O flux during **Dry season**
Seasonal variations in daily rainfall, mean surface water level, CH₄ and N₂O flux during Wet season
Results

<table>
<thead>
<tr>
<th>Treatment</th>
<th>CH$_4$ (kg CH$_4$ ha$^{-1}$)</th>
<th>N$_2$O (kg N$_2$O ha$^{-1}$)</th>
<th>GWP (kg CO$_2$ eq ha$^{-1}$)</th>
<th>Grain yield (Mg ha$^{-1}$)</th>
<th>Water use (m$^{-3}$ ha$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CF</td>
<td>69.9 DS 328.9 DS</td>
<td>1.6 DS 0.509 DS</td>
<td>2853 DS 11333 DS</td>
<td>6.9 DS 5.41 DS</td>
<td>10336 DS 10944 DS</td>
</tr>
<tr>
<td>AWD</td>
<td>42.2 DS 350.1 DS</td>
<td>3.5 DS 0.633 DS</td>
<td>2476 DS 12093 DS</td>
<td>6.88 DS 5.83 DS</td>
<td>5913 DS 9215 DS</td>
</tr>
<tr>
<td>AWDS</td>
<td>52.8 DS 374.0 DS</td>
<td>2.63 DS 0.528 DS</td>
<td>2578 DS 12874 DS</td>
<td>6.90 DS 5.42 DS</td>
<td>5012 DS 8949 DS</td>
</tr>
<tr>
<td>Season mean</td>
<td>54.9 DS 351.5 DS</td>
<td>2.58 DS 0.556 DS</td>
<td>2636 DS 12100 DS</td>
<td>6.89 DS 5.55 DS</td>
<td>7087 DS 9702 DS</td>
</tr>
</tbody>
</table>

Treatment Means

- **CH$_4$**
 - CF: 199.4 A
 - AWD: 196.1 B
 - AWDS: 213.4 A

- **N$_2$O**
 - CF: 1.05 B
 - AWD: 2.07 A
 - AWDS: 1.58 B

- **GWP**
 - CF: 7093 A
 - AWD: 7284 A
 - AWDS: 7725 A

- **Grain yield**
 - CF: 6.16 A
 - AWD: 6.35 A
 - AWDS: 6.16 A

- **Water use**
 - CF: 10640 A
 - AWD: 7564 B
 - AWDS: 6980 B

- **1.7% reduction**

Note: DS = Dry Season, WS = Wet Season.
Conclusions

• Implementation of AWD is feasible in DS in Central Luzon

• The AWD with the current settings significantly reduced the seasonal total CH$_4$ emission, but the reduction rate against CF was very limited (1.7%)

• N$_2$O emission was enhanced by the AWD, and the resultant GWP of CH$_4$ and N$_2$O did not significantly differ among water management.
Feasible options that enhance the ability of AWD in reducing GHG emissions in Central Luzon, Philippines:

(1) An earlier rice residue incorporation under dry soil conditions

(2) An earlier implementation of AWD;

(3) A proper maintenance of flooded soil condition during/after N fertilizer topdressing.
Thank you